

WCRP-FPA2 Polar Challenge

M. Rixen and the Polar Challenge Committee

www.wcrp-climate.org/polarchallenge

The concept

A Prize money award to the first team completing a 2000 km continuous mission with an autonomous underwater vehicle (AUV) under the sea-ice

- Bonus demonstration 1 (optional):
 - regular observations of sea ice thickness or draft
- Bonus demonstration 2 (optional):
 - successful under-ice transmission of position and environmental data

The context

The cryosphere:

- plays a fundamental role in climate
- is directly impacted by climate change

Observations of the polar oceans:

- sparse
- risky
- expensive

The vision and mission

- A new paradigm for long-term under-ice observations
- A cost-effective, autonomous and scalable ocean monitoring network for the Polar regions
- Analogy to ARGO but for sea-ice covered regions

The long-term benefits for the public and private sector

- Energy
- Environment
- Safety
- Transport/shipping
- Insurance
- Climate research and services
- Weather forecasts
- ...

AUV/Glider technology

Typical observations:

Temperature
Salinity
Currents
pH
Chlorophyll
etc

... at a fraction of the cost of conventional (ship-based) observing systems

The Challenge

- Ice-covered ocean regions:
 - AUV/glider range limitation
 - No GPS fix
 - No real-time data transmissions
- Innovations required:
 - Endurance
 - Positioning and navigation
 - Communications

The competition

- Draft guidelines available on-line, open for review
- When: 2016-2019 (with possible extension)
- Where: Arctic/Antarctic under the sea-ice
- Process: application and review by Polar Challenge Committee, mission attempts, prize(s) claim, review by Judge Panel, award ceremony
- Competitors are responsible for mobilizing their own resources
- Announcement of Prize details: ASSW/AOS, Fairbanks, 15 March 2016

Would you like to help developing the Polar observing network of the future?

- would you like to compete for the Prize?
- would you like to become a co-sponsor of the Prize?

POLAR CHALLENGE

POLAR CHALLENGE

Be the first to complete a 2000 km continuous mission with an Autonomous Underwater Vehicle (AUV) under the sea ice.

CONTEXT

The cryosphere plays a fundamental role in the climate system. We need much better monitoring and prediction capabilities for the polar regions.

CHALLENGES AND OPPORTUNITIES

Polar observations are expensive, risky and sparse. We can expand AUVs' endurance, navigation and communication capabilities to operate under the sea ice.

VISION

A cost-effective, sustainable and autonomous polar ocean monitoring system to drive a new era for climate research and services.

THE POLAR CHALLENGE

POLAR CHALLENGE

POLAR CHALLENGE

Be the first to complete a 2000 km continuous mission with an Autonomous Underwater Vehicle (AUV) under the sea ice.

CONTEXT

The cryosphere plays a fundamental role in the climate system. We need much better monitoring and prediction capabilities for the polar regions.

CHALLENGES AND OPPORTUNITIES

Polar observations are expensive, risky and sparse. We can expand AUVs' endurance, navigation and communication capabilities to operate under the sea ice.

VISION

A cost-effective, sustainable and autonomous polar ocean monitoring system to drive a new era for climate research and services.